Logo Search packages:      
Sourcecode: wims version File versions

Matrix3D.java

/*
 * @(#)Matrix3D.java    1.2 96/12/06
 *
 * Copyright (c) 1994-1996 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

/** A fairly conventional 3D matrix object that can transform sets of
    3D points and perform a variety of manipulations on the transform */
00033 class Matrix3D {
    float xx, xy, xz, xo;
    float yx, yy, yz, yo;
    float zx, zy, zz, zo;
    static final double pi = 3.14159265;
    /** Create a new unit matrix */
00039     Matrix3D () {
      xx = 1.0f;
      yy = 1.0f;
      zz = 1.0f;
    }
    /** Scale by f in all dimensions */
00045     void scale(float f) {
      xx *= f;
      xy *= f;
      xz *= f;
      xo *= f;
      yx *= f;
      yy *= f;
      yz *= f;
      yo *= f;
      zx *= f;
      zy *= f;
      zz *= f;
      zo *= f;
    }
    /** Scale along each axis independently */
00060     void scale(float xf, float yf, float zf) {
      xx *= xf;
      xy *= xf;
      xz *= xf;
      xo *= xf;
      yx *= yf;
      yy *= yf;
      yz *= yf;
      yo *= yf;
      zx *= zf;
      zy *= zf;
      zz *= zf;
      zo *= zf;
    }
    /** Translate the origin */
00075     void translate(float x, float y, float z) {
      xo += x;
      yo += y;
      zo += z;
    }
    /** rotate theta degrees about the y axis */
00081     void yrot(double theta) {
      theta *= (pi / 180);
      double ct = Math.cos(theta);
      double st = Math.sin(theta);

      float Nxx = (float) (xx * ct + zx * st);
      float Nxy = (float) (xy * ct + zy * st);
      float Nxz = (float) (xz * ct + zz * st);
      float Nxo = (float) (xo * ct + zo * st);

      float Nzx = (float) (zx * ct - xx * st);
      float Nzy = (float) (zy * ct - xy * st);
      float Nzz = (float) (zz * ct - xz * st);
      float Nzo = (float) (zo * ct - xo * st);

      xo = Nxo;
      xx = Nxx;
      xy = Nxy;
      xz = Nxz;
      zo = Nzo;
      zx = Nzx;
      zy = Nzy;
      zz = Nzz;
    }
    /** rotate theta degrees about the x axis */
00106     void xrot(double theta) {
      theta *= (pi / 180);
      double ct = Math.cos(theta);
      double st = Math.sin(theta);

      float Nyx = (float) (yx * ct + zx * st);
      float Nyy = (float) (yy * ct + zy * st);
      float Nyz = (float) (yz * ct + zz * st);
      float Nyo = (float) (yo * ct + zo * st);

      float Nzx = (float) (zx * ct - yx * st);
      float Nzy = (float) (zy * ct - yy * st);
      float Nzz = (float) (zz * ct - yz * st);
      float Nzo = (float) (zo * ct - yo * st);

      yo = Nyo;
      yx = Nyx;
      yy = Nyy;
      yz = Nyz;
      zo = Nzo;
      zx = Nzx;
      zy = Nzy;
      zz = Nzz;
    }
    /** rotate theta degrees about the z axis */
00131     void zrot(double theta) {
      theta *= (pi / 180);
      double ct = Math.cos(theta);
      double st = Math.sin(theta);

      float Nyx = (float) (yx * ct + xx * st);
      float Nyy = (float) (yy * ct + xy * st);
      float Nyz = (float) (yz * ct + xz * st);
      float Nyo = (float) (yo * ct + xo * st);

      float Nxx = (float) (xx * ct - yx * st);
      float Nxy = (float) (xy * ct - yy * st);
      float Nxz = (float) (xz * ct - yz * st);
      float Nxo = (float) (xo * ct - yo * st);

      yo = Nyo;
      yx = Nyx;
      yy = Nyy;
      yz = Nyz;
      xo = Nxo;
      xx = Nxx;
      xy = Nxy;
      xz = Nxz;
    }
    /** Multiply this matrix by a second: M = M*R */
00156     void mult(Matrix3D rhs) {
      float lxx = xx * rhs.xx + yx * rhs.xy + zx * rhs.xz;
      float lxy = xy * rhs.xx + yy * rhs.xy + zy * rhs.xz;
      float lxz = xz * rhs.xx + yz * rhs.xy + zz * rhs.xz;
      float lxo = xo * rhs.xx + yo * rhs.xy + zo * rhs.xz + rhs.xo;

      float lyx = xx * rhs.yx + yx * rhs.yy + zx * rhs.yz;
      float lyy = xy * rhs.yx + yy * rhs.yy + zy * rhs.yz;
      float lyz = xz * rhs.yx + yz * rhs.yy + zz * rhs.yz;
      float lyo = xo * rhs.yx + yo * rhs.yy + zo * rhs.yz + rhs.yo;

      float lzx = xx * rhs.zx + yx * rhs.zy + zx * rhs.zz;
      float lzy = xy * rhs.zx + yy * rhs.zy + zy * rhs.zz;
      float lzz = xz * rhs.zx + yz * rhs.zy + zz * rhs.zz;
      float lzo = xo * rhs.zx + yo * rhs.zy + zo * rhs.zz + rhs.zo;

      xx = lxx;
      xy = lxy;
      xz = lxz;
      xo = lxo;

      yx = lyx;
      yy = lyy;
      yz = lyz;
      yo = lyo;

      zx = lzx;
      zy = lzy;
      zz = lzz;
      zo = lzo;
    }

    /** Reinitialize to the unit matrix */
00189     void unit() {
      xo = 0;
      xx = 1;
      xy = 0;
      xz = 0;
      yo = 0;
      yx = 0;
      yy = 1;
      yz = 0;
      zo = 0;
      zx = 0;
      zy = 0;
      zz = 1;
    }
    /** Transform nvert points from v into tv.  v contains the input
        coordinates in floating point.  Three successive entries in
      the array constitute a point.  tv ends up holding the transformed
      points as integers; three successive entries per point */
00207     void transform(float v[], int tv[], int nvert) {
      float lxx = xx, lxy = xy, lxz = xz, lxo = xo;
      float lyx = yx, lyy = yy, lyz = yz, lyo = yo;
      float lzx = zx, lzy = zy, lzz = zz, lzo = zo;
      for (int i = nvert * 3; (i -= 3) >= 0;) {
          float x = v[i];
          float y = v[i + 1];
          float z = v[i + 2];
          tv[i    ] = (int) (x * lxx + y * lxy + z * lxz + lxo);
          tv[i + 1] = (int) (x * lyx + y * lyy + z * lyz + lyo);
          tv[i + 2] = (int) (x * lzx + y * lzy + z * lzz + lzo);
      }
    }
    public String toString() {
      return ("[" + xo + "," + xx + "," + xy + "," + xz + ";"
            + yo + "," + yx + "," + yy + "," + yz + ";"
            + zo + "," + zx + "," + zy + "," + zz + "]");
    }
}

Generated by  Doxygen 1.6.0   Back to index